دانلود پایان نامه

مندل معتقد بود که صفات گوناگون جانوران تحت اثر قوانین ریاضی در طی نسل های متمادی طبقه بندی و تنظیم می شوند، واژه ژن برای اولین بار توسط یوهانس پیشنهاد شد و ژن ها به عنوان عامل اصلی تفرق و نیز یک واحد کارا که در ایجاد فنوتیپ مشخص نقش اساسی ایفا می کنند شناخته شده اند که به طور مستقل از نسلی به نسل دیگر منتقل می شوند.
در سال 1903 دانشمندی با نام جانسن به نتایجی دست یافت که با نظریات مندل مطابقت داشت نتایج وی را می توان به شرح زیر خلاصه کرد:
جاندارانی که دارای یک ژنوتیپ می باشند می توانند از فنوتیپ متفاوتی برخوردار باشند.
انتخاب یک صفت فنوتیپی که ریشه ژنوتیپی نداشته باشد تغییر ارثی تولید نمی کند.
انتخاب صفات ارثی می تواند تا حدودی سبب تغییرات ظاهری شود ولی اثر آن کم خواهد بود مگر آنکه این تغییرات ناشی از جهش باشند.
فنوتیپ : به ویژگی های ظاهری یک جاندار فنوتیپ گفته می شود.
ژنوتیپ : به محتوای ژنتیکی یک جاندار،ژنوتیپ آن جاندار گفته می شود.
به بیان ساده تر فنوتیپ حاصل همکاری و هماهنگی مابین کلیه ژن هاست و ژنوتیپ یک تیم فیزیولوژیکی است که در آن ژن می تواند ساختار شیمیایی خود را در مسیر تکامل تغییر دهد. به فرآیند جمع شدن و با هم عمل کردن ژن ها کوآداپتیشن می گویند و نتیجه این عمل باعث ایجاد یک تعادل داخلی در موجود زنده است[6]. علم وراثت با تلاش های موفقیت آمیز مندل پایه گذاری شد. نتایج تحقیقات این دانشمند نشان داد که خصوصیات و صفات والدین به فرزندان منتقل می شود. الگوریتم وراثتی، برداشتی از علم وراثت در سطح سلولی است[15].
1-4-2 الگوریتم ژنتیک
الگوریتم ژنتیک نوع خاصی از الگوریتم های تکاملی و هوش مصنوعی است که از تکنیک های زیست‌شناسی مانند وراثت و جهش برای یافتن جواب استفاده می‌کند. الگوريتم ژنتيك ابزاری است که توسط آن ماشين می تواند مكانيزم انتخاب طبيعی را شبيه سازی نمايد. اين عمل با جستجو درفضای مسئله جهت يافتن جواب برتر و نه الزاما بهينه صورت می پذيرد. مهدوی در کتاب الگوریتم ژنتیک و کاربرد های آن، الگوریتم ژنتیک را یک روش جستجو، منطبق بر ساختار ژن ها و کروموزوم ها است، تعریف می کند[9]. الگوریتم ژنتیک یک برنامه شبیه سازی کامپیوتری از فرآیند تکامل طبیعی به منظور جستجوی راه حل و مسائل بهینه سازی است. گمان نزدیکی از سیستم های تعدیل پذیر در ماشین های بازگشتی به مرحله نابهنگام از نرم افزارها و سخت افزارهای کامپیوتر ها توسعه داده شده است. زمان زیادی صرف شده، گرچه، این موضوع به اندازه کافی برای استفاده، به عنوان یک ابزار قابل استفاده کامل شده است. دسترس پذیری به کامپیوتر های با سرعت بالا این راه را برای برنامه های الگوریتم های ژنتیک در مهندسی هموار کرده است. کتاب الگوریتم ژنتیک و بهینه سازی سازه های مرکب الگوریتم ژنتیک را یک روش جستجو می نامد که بر پایه مشاهدات خصوصیات فرزندان نسل های متوالی، و انتخاب فرزندان بر اساس اصل بقای بهترین پایه ریزی شده است[2].
1-4-3 تاریخچه الگوریتم ژنتیک
در نیمه دوم قرن بیستم، روش ها و رویکردهای تازه ای برای حل مسائل گوناگون مطرح شد که موضوع تحقیقاتی بسیاری از دانشمندان قرار گرفت و تحولی شگرف در زمینه های مختلف مهندسی و علوم ایجاد کرد. مدل کردن سلول عصبی(نرون ) و استفاده از این مدل به عنوان محاسبه گر در دهه ی 40 و 50 میلادی پیشنهاد شد. این جریان علمی پس از توقف موقت در دهه 70 میلادی، در دهه 80 به شکوفایی رسید و توانایی خود را در بسیاری از زمینه ها مانند تقریب تابع، پیش بینی، بازشناسی الگو و بهینه سازی به اثبات رساند. در دهه 60 میلادی، رویکردهای تکاملی با تلاش های هلند و فوگل در طراحی بهینه سازهای الگوریتم ژنتیک و برنامه ریزی تکاملی به ثمر نشست[6].
پایه و اساس الگوریتم ژنتیک بر اساس نظریه داروین در مورد تکامل و قوانین وراثت مندل شکل گرفت. این الگوریتم بر مبنای نظریه محاسبات تکاملی است. ایده اصلی الگوریتم های تکاملی در سال 1960 توسط ریچینبرگ مطرح گردید الگوریتم ژنتیک که یکی از زیر مجموعه های الگوریتم تکاملی است برای اولین بار توسط پرفسور هالند مطرح گردید و سپس توسط جان کوزا( ١٩٩٢) عموميت يافت. این روش در حقیقت یک روش جستجو منطبق بر ساختار ژن ها و کروموزوم ها است. هالند اولین بار از رشته های بیتی برای بیان اطلاعات کروموزوم ها استفاده کرد و هنوز بسیاری از محققان این شیوه را بهترین می دانند. هر ژن توسط یک رشته بیتی بیان می شود، بنابراین باید قبل از اعمال به مسئله به صورت مناسبی بازنمایی شود. به عبارت دیگر، باید در نظر داشت که الگوریتم ژنتیک روی رمز متغیرها اعمال می شود[15]. با توجه به این توضیحات گلومی الگوی جدیدی از بهینه سازی را بر پایه الگوریتم ژنتیک و تلفیق آن با یک نرم افزار اجزا محدود ارائه کرده است.
الگوریتم های ژنتیک یکی از الگوریتم های جستجوی تصادفی است که ایده آن برگرفته از طبیعت می باشد. الگوریتم های ژنتیک برای روش های کلاسیک بهینه سازی در حل مسائل خطی، محدب و برخی مشکلات مشابه بسیار موفق بوده اند ولی الگوریتم های ژنتیک برای حل مسایل گسسته و غیر خطی بسیار کاراتر می باشند. در حل مسئله با الگوریتم ژنتیک، هر یک از متغیر های به صورت یک ژن در وراثت طبیعی در نظر گرفته می شوند. از کنار هم قرار گرفتن تمام متغیرهای یک مسئله(ژن ها)، یک کروموزوم ساخته می شود. الگوریتم ژنتیک در قالب عام به دو صورت دودویی وحقیقی (پیوسته) قابل پیاده سازی است. الگوریتم ژنتیک دودویی سابقه ای طولانی تر از نوع حقیقی آن دارد[15].
1-4-4 خصوصیات الگوریتم ژنتیک
بعضی از خصوصیات مهم این الگوریتم عبارتند از:
یک جستجو گر موازی است و جستجو را با مجموعه ای از جواب ها شروع می کند.
بر خلاف بسیاری از الگوریتم ها به جای عمل بر روی متغیرها روی رمز آنها عمل می کند.
بر پایه احتمالات عمل می کند و برای تولید نسل از قوانین اتفاقی به جای قوانین معین استفاده می کند.
قادر است پاسخ بهینه را هم برای مسائل با توابع گسسته و هم مسائل با توابع پیوسته بیابد.
به اطلاعات مشتق تابع هدف نیاز ی ندارد.
قادر است پاسخ بهینه را برای مسائل با تعداد متغیر های زیاد پیدا کند.